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ECOLE CENTRALE DE LILLE

Abstract

MINES ParisTech

Centre de recherche en informatique

by Pierre-Amaury GRUMIAUX

This report is an explanation guide of what was done during my second-year internship.

It is divided into three parts :

1. A presentation of the company where the internship took place, who they are,

what they do, and what is the project I took part in.

2. A technical review of the mission of the internship, written as clear as possible for

the lecturer. This chapter is itself divided into three parts :

(a) A quick review of what is physical modeling synthesis

(b) Presentation of Faust, a functional programming language for implementing

signal processing blocks, with some elements to understand how it works

(c) The description of what was produced during the internship : pm.lib (a Faust

library), IR2dsp.py (a python script to generate a modal model in Faust from

an impulse response), and mesh2dsp.py (a python script to generate a modal

model based on FEM analysis).

3. An assessment of the internship, and what can be done in future work.
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Chapter 1

Company presentation

This internship took place at the Centre de recherche en informatique (CRI) which is

the computer science laboratory of the MINES ParisTech school. The CRI is located in

Fontainebleau, a lovely French former royal city, around 50 km away from Paris.

1.1 The MINES ParisTech school

The MINES ParisTech school is an engineering school, one of the most prestigious in

France, created in the year 1783. It provides a high quality education to train new high

level engineers. It also hosts an important research activity within its laboratories. The

MINES research activity is shared into five research departments :

• Earth science and environment

• Energetics and process

• Mechanics and materials

• Economics, management and society

• Mathematics and systems

The internship took place in that last department. This department is itself divided into

several parts [1] :

• The mathematical morphology center (CMM) whose topic is the science of mor-

phology which is helpful to analyze images.

• The robotics center (CAOR) which studies 3D scenes real-time analysis algorithms.

1



Company Introduction 2

• The automatics and systems center (CAS) whose activities are about physical

systems control.

• The applied mathematics center which shows its skills in modelling and decision

theory about climate change.

• The computer science research center (CRI) where I did my internship. Its struc-

ture will be more detailed in the following section.

• The bio-informatics center develops some machine learning methods to analyze

biological and chemical data.

1.2 The Centre de Recherche en Informatique (CRI)

The CRI is a computer science laboratory located in Fontainebleau which is around 50

km away in the south of Paris. The CRI dedicates its activity to languages for infor-

mation technology, and develop some techniques for semantics analysis and automated

transformations in order to answer to industrial needs (performance, energy consump-

tion, security, development costs) as well as societal and administrative needs (consistent

information share, data normalization, information access, heritage safeguard) [2].

ulIts activity rests upon several current projects in the computer science area, among

which we can quote MINDs (a musical therapy for Alzheimer suffering patients), ACO-

PAL (analysis and compilation of parallel programming languages), or LEGIVOC (it

provides a terminology database to help for understanding EU laws). This internship

took part in the FEEVER project.

1.3 The FEEVER project

FEEVER (Faust Environment Everyware) is a project funded by the ANR since Oc-

tober 2013. The motivation of the FEEVER project is the belief that there are a real

improvements to make in the audio digital world [3]. Indeed, today’s technologies are

not that convenient for the audio engineer. Audio technologies depend on the device on

which it is used, and it is not standardize or compatible.

Feever defines itself to be :

• portable, to allow program-once, deploy-everywhere economic advantages
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• easily programmable, to narrow the gap between specifications and implementa-

tion,

• able to deal with multiple platforms, for seamless integration within the users

listening environments,

• efficient both in terms of computing time, since audio processing is a highly

compute-intensive activity, and energy, if only to permit mobile applications

• secure, since audio processing activity performed on the client side must not jeop-

ardize the user system

[3]



Chapter 2

Mission

In this section, the internship mission will be explained and developed. Some technical

elements will be detailed : first the lecturer will have a look into the physical modelling

synthesis, then he will be given some elements to understand how the Faust language

works. In the third section, the core of the mission will be introduced : the pm.lib file,

along with the two scripts IR2dsp.py and mesh2dsp.py.

2.1 Physical modelling synthesis

Sound synthesis is a subject of research which occupies the time of a lot of computer

music researchers. A nice view of the different digital synthesis methods is provided in

[4], but let’s quickly present some synthesis methods in this paper. The most-known

synthesis technique is the additive synthesis. It is obtained by adding together several

waveforms (usually harmonically related). The subtractive synthesis is obtained by

filtering complex waveforms in order to remove some specific frequencies. Subtractive

synthesizer can produce specify waveforms such as triangle waves, sawtooth waves or

square waves which have complex frequency spectrum, so that the waveform can be

filtered. The FM synthesis (frequency modulation synthesis) requires at least two signal

generators. One signal is used to modify one of the characteristics of another signal,

which can lead to new sound undoable in additive or subtractive synthesis. The granular

synthesis is a method which manipulates very small samples to create a sound. The

physical modelling synthesis aims to describe the phenomena of the real world in the

best possible way by using physical models. In this section are explained some points of

the theory, in particular how digital waveguide models work.

4



Mission 5

2.1.1 Principle

The physical modelling synthesis refers to a plenty of methods which enable to generate

the waveform of a sound based on a mathematical model, with equations and algorithms.

This model aims to describe how the sound is produced thanks to the laws of physics.

The results will depend on several parameters such as the material, the instrument size

or even how the musician wants to excite its instrument (plucked, stricked, bowed ...).

There are many kinds of mathematical models for describing how the sound is generated.

2.1.2 Delay lines

A delay line is an elementary element which models an acoustic propagation of the

sound. This element is present in most of delay-effects and digital waveguide synthesis

models. A delay line inserts a time delay between its input and output, as shown in

figure 2.1. If the input signal is denoted x(n), n = 0, 1, 2..., then the output signal y(n)

of an M-length delay-line is :

y(n) = x(n−M), n = 0, 1, 2 (2.1)

where x(n) = 0 for n < 0.

Figure 2.1: An M-sample delay line

We can see that the output signal is a kind of delayed version of the input signal.

An example : Damped traveling waves

Figure 2.1 also represents a simulation of a traveling wave which propagates in one

direction. However in this form the traveling wave would never stop, so we had to add

an element so take the damping factor into account. This damping factor appears at

each propagation stage but it can be gather in one final damping factor. In figure 2.2,

the damping factor g is merely a constant lower than zero g < 0 so that gM < 0,∀M ∈ N
as well. If we need internal signals within this delay line, they can be tapped out and

processed with correcting gains.

This damping factor gives good results but is not that representative of the real world. A

better approach is the use of digital filters G(z) which implements frequency-dependent

attenuation, where |G(z)| < 1, ∀z ∈ C, as figure 2.3 shows.
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Figure 2.2: A damped travelling wave with gM < 1, ∀M ∈ N

Figure 2.3: A damped travelling wave using a digital filter, where |G(z)| < 1,∀z ∈ C

2.1.3 Digital waveguides

A digital waveguide is defined as a bidirectional delay line with at some wave impedance

R, as shown in figure 2.4.

Figure 2.4: A digital waveguide N samples long at wave impedance R

As we can see a digital waveguide represents two traveling waves in opposite directions,

since it has been proved that the vibration of an ideal string can be decomposed in two

traveling waves going in opposites ways. This model can be used for any one-dimensional

acoustic system such as strings (guitar, violin ...), bore (clarinet) or pipe (flute, trumpet).

Output of a digital waveguide

The two traveling waves in a digital waveguide are just components of an acoustic

vibration. We need to sum these two components to output the needed physical variable,

as shown in figure 2.5

Figure 2.5: Output of a digital waveguide using taps (more detailed)

Digital waveguide inputs

Most of musical instruments need to be excited in order to generate a sound, which is

modelled in digital waveguides as physical inputs. It corresponds as a disturbance of

the 1D propagation medium, and has to be taken into account in both left and right



Mission 7

directions of the digital waveguide. It can be a superimposed input (simple vision, figure

2.6) or an interaction input (more relatistic vision, figure 2.7). For example, plucking a

string which is already vibrating (interactive input) has to be different than plucking a

string at rest (interactive input with no interaction, so additive input).

Figure 2.6: An input signal is added in one point to both waveguide components

Figure 2.7: An interactive input which takes into account the incoming waves at one
point and add the result of the interaction with the input at the same point

2.1.4 Ideal string

An ideal vibrating string, if plucked, will vibrate forever in one plane. The wave equation

which describes its movement is well-known in physics :

K
∂2y

∂t2
(t, x) = ε

∂2y

∂x2
(t, x)

where y is the string displacement, K the string tension and ε the linear mass density.

This form comes from Newton’s first law, force = mass× acceleration.

Since d’Alembert in 1747, the solution of the later equation is known and can be ex-

pressed as :

y(t, x) = yr(t−
x

c
) + yl(t+

x

c
)

where c ,
√

K
ε .

We can see here that the equation 2.1.4 looks like the waveguide approach, but we need

to put it in a digital way. This continuous solution can be sampled to the equation 2.2 :
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y(nT,mX) = yr(nT −mT ) + yl(nT +mT )

, y+(n−m) + y−(n+m)
(2.2)

where T is the sampling interval, and X = cT the spatial sampling interval in meters.

This final solution looks like the bidirectional waveguide we have seen sooner.

2.1.5 Rigid terminations

To achieve our string (or bore) physical model, we need to provide some information

about both ends of the string, which are called terminations and which are rigid. At these

terminations, the string cannot move, which is written as y(t, 0) = 0 and y(t, L) = 0.

Along with the wave equation, this yields to equation 2.3 and 2.4:

y(nT, 0) = y+(n) + y−(n)⇔ y+(n) = −y−(n) (2.3)

y(nT,NX/2) = y+(n− N

2
) + y−(n+

N

2
)⇔ y+(n+

N

2
) = −y−(n+

N

2
) (2.4)

where N , 2L
X determines the time in samples for the wave to propagate from one

end to the other, so the total delay. So we see that both waves are reflected with a

negative coefficient which invert the waveform. Both terminations can be added to the

bidirectional waveguide model in the following figure 2.8 :

Figure 2.8: Rigidly terminated ideal string, with a displacement output at position
x = ξ

2.1.6 Conclusion

This achieve the chapter about physical modeling synthesis. Only a small part of this

theory is reviewed here, but it will be sufficient for understanding what will follow. The
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interested reader can look further information up in Julius O. Smith’s book. [5], where

most of the pictures used in this chapter come from.

2.2 Faust language

2.2.1 Introduction

Faust (Functional Audio Stream) is a functional programming language specifically de-

signed for real-time signal processing and synthesis. [6]. Faust is a specification lan-

guage which provides an adequate notation to describe signal processors. Most of audio

devices can be described as signal processors as they take some input signals, and trans-

form them into output signals. The Faust language is also block-diagram oriented. It

combines functional programming with block-diagram algebra in order to enable the

programmer to construct block-diagram easily with functions composition. Faust pro-

grams are fully compiled, the compiler translating the Faust code into C++ code. Faust

source file take the .dsp extension, and library file take the .lib extension.

2.2.2 Syntax

A Faust program always contains a ”main” function which is called process and specifies

a block diagram. Here is a simple example which takes the input x and outputs the same

signal x, as a simple wire in the physical world :

process(x) = x;

The simplest signal with only zero-value samples is written :

process = 0;

Operators

The ”,” symbol is used for putting diagrams in parallel, as if we want a stereo output

signal :

process(x,y) = x,y;

Mathematical operators such as +, -, * or / are also seen as signal processors. For

example, the + operator takes two input signals in parallel and provides one output

signal :

process(x,y) = x,y:+;

The : symbol is used here for putting block diagrams in series. The first part consists
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in putting x and y into two wires and providing these two wires as inputs for the second

part, the + operator. However, for convenience Faust enables the programmer to write

process(x,y) = x+y;. The other symbols works the same way.

An interesting symbol is which consists in a simple wire, so this does nothing to

the input signal. Therefore process(x) = x; as seen before could be rewritten as

process = ;

Now let’s have a look at an important symbols in block diagrams algebra : the feedback

operator ~, used for recursive composition. The code

process = + ~ ;

provides the diagram in figure 2.9.

Figure 2.9: Block diagram generated for the code process = + ~ ;

The feedback connects the output to the input and is a nice way for differential equations

for example. The last diagram features the equation y(n) = x(n) + y(n− 1) where the

one-sample delay (represented by the little square) is implicit and cannot be avoided.

There are two other block-diagram operator, the split composition and merge composi-

tion. The split composition with the operator <:

process = <: , ;

enables the programmer to duplicate a signal into two or more identical parallel signals.

Figure 2.10: Block diagram generated for the code process = <: , ;

Inversely, the merge composition, with the operator :>

process = , :>

provides a way to join two signals by adding them up.

Finally, we can implement delay in an easy way with the @ operator.

process(x) = x@4;
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Figure 2.11: Block diagram generated for the code process = , <: ;

is a processor which outputs the input signal x with a 4-samples delay. A one-sample

delay can also be written as x’, equivalent to x@1.

Functions declaration and utilisation

Functions declaration is done in a common way :

average(x,y) = (x + y) / 2;

where average is the function name, and x and y are the parameters of the function.

These parameters are input signals of the corresponding signal processor which transform

it into an output. Naming parameters is optional but more readable : indeed the average

function can be written also in the following way, without specify any parameter :

average = ( , : +),2 : /;

Function parameters often do not appear in functional blocks as they are implicitly

provided in the ”wires” and taken into account as input for the functions. For example,

using the average function with x2 instead of x could be written as :

process = square, :average;

where square would be the classic square function (square(x) = x*x;). The diagram

2.12 illustrates this later code. We see that the output of the square function implicitly

becomes the first input of the average function.

Figure 2.12: Block diagram generated for the code process = square, :average;
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2.2.3 Libraries

The Faust language enables to include libraries as it is possible in most of programming

languages. For that purpose, the import function is used to import definitions from

other source file:

import("math.lib");

This library includes a lot of useful math functions.

The work of the internship was mainly to go further with pm.lib file, which is a physical

modeling synthesis library file for Faust. It will be explained in the next section. More-

over, some library files were used as well : music.lib (which imports math.lib and

declares some useful functions for music applications as spacialisation, envelops, delays)

and filter.lib (which declares some digital filters, reviewed in [7]).

2.2.4 Diagrams generation

A powerful tool provided with the Faust language is the possibility to generate block

diagrams directly from the code. It takes on its full meaning as the Faust language is

oriented towards processing blocks building. Such diagrams has been encountered in

previous sections.

To generate a block diagram, simply use the -svg option while using the faust command

:

faust -svg file.dsp

This will create a subfolder of the current folder which contains a .svg (scalable vector

graphics) file for each block-diagram expression of the file in question. These several

.svg files are useful for expanding some parts of the final process, or for coming back

to a more general view.

2.2.5 Example : a sine oscillator

As an example to get the lecturer more used to the Faust language, here is the sine-

oscillator example taken from the official Faust website [8]:

phasor(f) = f/fconstant(int fSamplingFreq , <math.h>) : (+ ,1.0: fmod) ~ _ ;

osc(f) = phasor(f) * 6.28318530718 : sin;

process = osc(hslider ("freq", 440, 20, 20000 , 1))

* hslider ("level", 0, 0, 1, 0.01);
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What we want to do here is to create all samples of the sine wave, one by one, infinitely.

As we cannot specify samples infinitely we will need a loop, by the use of the ~ (feedback)

operator.

The phase generator creates a periodic signal between 0 to 1. The fmod function is a

float modulo function, and we provide 1 as the ”limit” of the modulo, i.e. 1.4 fmod

1.0 = 0.4. So here we provide a constant 0.1 which goes through a + operator, then

in a fmod 1.0 operator, which output 0.1, the first sample.. But we see the feedback

loop that takes the output of fmod to provide it into +, which gives the second sample:

0.2 (after processing by fmod : 0.2 fmod 1.0 = 0.2), and so on. When the feedback

loop following by + gives a number more than 1.0 it is wrapped by ~. It finally creates

the signal : (0.1, 0.2, 0.3, 0.4, ...).

Figure 2.13: Block diagram generated for the code 0.1 : (+,1.0:fmod) ~

The function fconstant aims to extract the constant fSamplingFreq from math.h.

The later signal is divided by the sampling frequency to obtain a signal at . Finally we

multiple this signal by the frequency parameter f to produce a signal at frequency f.

osc(f) = phasor(f) * 6.28318530718 : sin;

Now we have the phase of the oscillator, we multiply it by 2π before putting it into the

sine function.

Finally, we want the user to be able to modify the input frequency, as well as the volume

of the output. An interesting feature that was not presented in this section are GUI

elements, like buttons, sliders, nentry (number input) ... Two sliders are used to control

the input frequency f and the output volume. The input frequency slider becomes the

input of the phasor function, and we multiply the output signal of the oscillator

function by the volume slider (a value between 0 and 1).

The figure 2.14 shows the block diagram generated for the whole code.
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Figure 2.14: Block diagram generated for the sine oscillator code

2.2.6 Conclusion

The last example shows a simple program using several tools of the Faust language. This

language is really useful for processing blocks programming, so it is relevant for music

application. We will now dive into the core of the internship mission, the realisation of

the pm.lib file, which tries to implement some physical modeling synthesis features in

the Faust language.

2.3 pm.lib, IR2dsp.py and mesh2dsp.py

In this section, we explain the main productive task of the internship which was the cre-

ation of the physical modelling library pm.lib in Faust, and two python scripts, IR2dsp.py

and mesh2dsp.py. The entire code of these files can be found in the appendices.

2.3.1 pm.lib

The pm.lib file is a Faust library which includes functions to simulate some parts of

instruments based on physical modelling synthesis theory, presented in the first section.

Romain Michon, who is a Ph. D candidate at the Center for Computer Research in Music

and Acoustics (CCRMA) at Stanford University, has written the Faust-STK based on

the C++ synthesis tool kit in which there are some instruments based on physical models

[9]. The library works well and is very useful, but Romain proposed me to rewrite it

in a modular way : still upon physical models, the programming musician can connect

different instrumental elements to recreate existing instruments or new ones, in order to

extend the creative possibilities. The problem is that this kind of modular system imply

bidirectional elements according to the digital waveguide model. The Faust language is
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built as a one-directional blocks processing language, so it was not possible to directly

create bidirectional elements ready to be connected to each other. Romain started the

work by cleverly simulating a chain of bidirectional elements, having input and output

towards each side of the block diagram. We explain that simulation in the following

subsection.

Note that filter.lib and music.lib is included as we use some of their declared

functions.

Simulating bidirectional elements

The Faust language only proposes input from the left and output to the right, whereas

we need one digital waveguide, with one input and one output from and towards each

direction, as in figure 2.15

Figure 2.15: A digital waveguide as a bidirectional delay

So the idea to simulate it is to move both inputs from the left, and both towards the

right. The communication between two elements will be specify in the chain function.

We also add a third input/output which is the mix of the main signal output.

Given two blocks A and As, the way to chain them together is define in the chain

function as following :

chain(A:As) = (crossnn (1) ,\_’,\_ : \_,A : crossnn (1) ,\_,\_ : \_,chain(As) :

crossnn (1) ,\_,\_) \~ \_ : !,\_,\_,\_;}

As this code is not easily readable, let’s generate a diagram with the -svg option. The

diagram 2.16 shows two elements A (adding 1 to each signal) and B (adding 2 to each

signal) connected together. There are three inputs/outputs, two for the bidirectional

concept and a third one that mix both signals. The first input goes through a crossnn

function which is used here to switch two incoming signal (the first signal goes to the

second input and inversely), and is processed by B before being processed by A, as the

right-to-left line of the bidirectional line. The second signal is processed by A then by

B as the left-to-right line, but there is a mem element at the beginning which puts a

one-sample delay to the signal. This is unavoidable, for the simple reason that if there

is no delay between the two lines, we could put one block looping into itself so that the



Mission 16

first output goes to the second input and the second output goes to the first input : this

would not be computable as the Faust language calculates sample by sample.

Figure 2.16: The chain function is used to chain block A and B where A = +1,+1,+1

and B = +2,+2,+2

The chain function is also specified for one block only, which does nothing : chain(A)

= A;.

Now we have managed to specify a bidirectional connection between to block with chain,

the other fundamental elements are easy to set up.

The input and output function are also created according to the chain specification :

input(x) = +(x),+(x), ;

output(x,y,s) = x,y,x+y+s;

input merely adds a given signal to the two first inputs of one block. (figure 2.17)

output does nothing to the first two inputs (it outputs them without processing) but it

outputs the sum of the three inputs in the third wire. (figure 2.18)

Figure 2.17: Diagram showing the input function within a chain : process =

chain( , , : input(10) : , , );

No we can input and output within a chain of blocks, we specify terminations to simulate

the ends of instrument pieces such as strings or bores.
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Figure 2.18: Diagram showing the output function within a chain : process =

chain( , , : input(10) : , , );

Terminations

An unspecified termination is created first :

terminations(a,b,c) = (_,crossnn (1),_,_ : +,+,_ : b) ~ (c,a : crossnn (1));

This function creates terminations on each side of a chain but the inputs and outputs

are not closed (as we expect from a termination). Like chain, this function adds one

sample delay to both signals of the bidirectional line. The terminations function is

used that way :

rightGoingWaves,leftGoingWaves,mixedOutput : terminations(a,b,c) : rightGoingWaves,LeftGoingWaves,mixedOutput

where a and c are reflexion coefficients (for example −1) and b a chain of blocks.

Then a full termination is specified using the terminations function :

fullTerminations(a,b,c) = 0,0,0 : terminations(a,b,c) : !,!,_;

The fullTerminations function closes inputs and outputs of a chain, except for the

third output which gives the mixed signal.

Both left termination and right termination are specified as well :

leftTermination(a,b) = 0,0,0 : terminations(a,b,*(0));

rightTermination(b,c) = terminations (*(0),b,c) : !,!,_;

Those functions cut one end like fullTerminations does but leave the other end un-

closed.

Excitation functions

What we need to make an instrument playing a sound is an excitation. Two excitation

functions have been created here : impulseExcitation and acousticExcitation.
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impulseExcitation(gate) = gate <: _,mem : - : >(0);

provides a dirac impulse when a gate button is triggered.

acousticExcitation(gate ,P) = noise : *(gate : trigger(P))

with {

diffgtz(x) = (x-x’) > 0;

decay(n,x) = x-(x>0)/n;

release(n) = + ~ decay(n);

trigger(n) = diffgtz : release(n) : > (0.0);

};

creates a noise burst when a gate button is triggered. (full explaination can be found in

[10])

Strings

Before specifying any string, we need to implement a waveguide function as we see in

the first section.

waveguide(nMax ,n) = fdelay4(nMax ,n),fdelay4(nMax ,n),_;

This uses a 4th order fractional delay implemented in filter.lib (see [7]). n represents

the length of the waveguide in samples, and nMax the maximum length of the waveg-

uide (two parameters needed for the filter). We this waveguide we can implement an

idealString function :

idealString(length ,reflexion ,pluckPosition ,x) = fullTerminations(term ,wg ,term)

with{

nMax = 512; // each segment of the string can ’t be longer than that

N = length*SR/320 -8; // length (meters) to samples

nUp = N/2* pluckPosition : max(1); // upper string segment length

nDown = N/2*(1 - pluckPosition) : max(1); // lower string segment length

wg = chain(waveguide(nMax ,nUp) : input(x) : output : waveguide(nMax ,nDown

)); // waveguide chain

term = *(-reflexion); // terminations

};

This string expects some parameters :

• length : the length of the string in meters

• reflexion : the coefficient of reflexion (between 0 to less than 1 so that the string

is damped)
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• pluckPosition : where the string is plucked (between 0 and 1 excluded)

• x : the excitation input

This simulates an ideal string because of the reflexion parameter which is merely a

positive coefficient less than 1. We see that the fullTerminations function is the main

element of this idealString function. The functional block is a waveguide which has

been defined previously, and both terminations reflect the wave negatively with the

reflexion coefficient. We use two waveguides here : one of each side of the pluck position

(two waves are created after plucking)

The length parameter provides the way to change the frequency of the string sound.

The pluckposition changes a bit the timbre of the sound, and the reflexion coefficient

makes the string sounding longer when it approaches 1 (and inversely).

This ideal string is interesting but not that close to the reality, because both ends of a

real string instrument do not act merely as a negative coefficient. As every element in

the nature, it acts as a filter, giving an output signal from an input signal. The bridge

and nut of a string instrument can be simulated with a damping filter, which is a good

approximation of the reality.

dampingFilter(rho ,h0 ,h1,x) = rho * (h0 * x’ + h1*(x+x’’));

With this filter is created a bridge simulation :

bridge(length ,B,t60 ,x) = dampingFilter(rho ,h0,h1,x)

with{

freq = 320/ length;

h0 = (1.0 + B)/2;

h1 = (1.0 - B)/4;

rho = pow (0.001 ,1.0/( freq*t60));

};

More natural parameter are transformed in a way that the dampingFilter can process

with. This bridge reflexion will depend on the frequency of the string (its length) and

two interesting parameters :

• B : (0-0.99) the more B approaches 1, the more brightly the string sounds

• t60 : the decaying time of the string

The figure 2.19 (taken from nonIdealString diagram) helps to understand how the

damping filter processes the signal.
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Figure 2.19: The bridge implementation using a damping filter

Now an non ideal string can be simulated using the bridge function :

nonIdealString(length ,pluckPosition ,B,t60 ,x) = fullTerminations(term ,wg ,term)

with{

nMax = 512; // each segment of the string can ’t be longer than that

N = length*SR/320 -8; // length (meters) to samples

nUp = N/2* pluckPosition : max(1); // upper string segment length

nDown = N/2*(1 - pluckPosition) : max(1); // lower string segment length

wg = chain(waveguide(nMax ,nUp) : input(x) : output : waveguide(nMax ,nDown

)); // waveguide chain

term(x) = bridge(length ,B,t60 ,x);

};

This is exactly the same as the idealString function except that the reflexion coefficient

is replaced by the bridge which processes the incoming wave in a more naturally way.

As the bridge function expect two new parameters that are B and t60, so does this

function. This nonIdealString implementation sounds quite great, in a more acoustic

perception.

With this nonIdealString function we can go further and directly create two specific

strings : a nylonString and a steelString :

steelString(length ,pluckPosition ,x) = nonIdealString(length ,pluckPosition ,0.8,6,x

);

nylonString(length ,pluckPosition ,x) = nonIdealString(length ,pluckPosition ,0.25,4,

x);
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B and t60 were chosen empirically by ear, to recreate the sound of a steel and a nylon

string in the best way.

pm.lib includes two other functions : modeFilter and modalModel, which are used by

the two python scripts which are explained below, along with those two last functions.

Conclusion

pm.lib is in its beginning, and it is foreseen to add many more functions in order to

have a great number of modules which can be assembled to create instruments. However

the most important bases of the library are now established and enabled to go further

in the work.

2.3.2 IR2dsp.py

The idea of this script is to provide a way for a musician to create the sound of an

object in Faust, giving its impulse response (IR) in parameter. The impulse response of

a system is its output when it is excited with a brief impulse, ideally a Dirac function.

The script is written in Python, takes several parameter including the IR, and it creates

a .dsp file recreating the system behaviour in Faust. The way to do it in the script is to

find the frequency peaks of the signal and to store them. We can then estimate that the

signal is the sum of several bandpass filters (which are called the modes of vibration)

which central frequencies are those found previously, and to recreate that filter bank in

a Faust script. Full code can be found in appendix B.

Power spectrum of the signal

After opening the expected sound file in a signal variable, a Fourier Fast Transform

(FFT) is realised to compute the power spectrum of a given IR. The figure 2.20 shows

that power spectrum computed for an IR of a glass.

The corresponding piece of code is usual :

#Reading file

(fs , x) = read(soundFile)

#Normalizing sound

x = x/max(x)

#FFT

X = np.abs(np.fft.fft(x))

X = X/(max(X))
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Figure 2.20: Power spectrum in dB of an IR of a glass

#computing corresponding frequencies

time_step = 1 / fs

freqs = np.fft.fftfreq(x.size , time_step)

idx = np.argsort(freqs)

#plot for debug

plt.plot(freqs[idx], 20*np.log(X[idx]))

plt.show()

Detecting frequency peaks

Now the power spectrum is computed, we need to detect at which frequencies the system

responds the more. First we need some information such as the minimum peak amplitude

to regard one frequency as a peak, and the minimum distance allowed between two peaks.

Indeed, according to the sampling frequency, we could have the two highest frequencies

within the same peak, and we do not want to count it as two peaks.

#detecting peaks

threshold = math.pow(10, float(peakThreshold)/20) #from dB to X unit

distance = int(peakDistance)/(fs/x.size) in sample count

indexes = peakutils.indexes(X[idx], thres=threshold , min_dist=distance)
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The peakutils python library is used and allows to directly extract the indexes of the

peaks positions in the signal. The two first lines aim to transform the user parame-

ters into readable variable for the program. We expect the user to give more natural

parameters, such as threshold in decibel and minimum distance in hertz.

Computing and storing all characteristics of the filters

With the indexes we are able to compute three parameters which describe a bandpass

filter : the central frequency, the gain and the t60 (audio decay time, the time to decay

to −60dB see [11]).

#Storing frequencies and gains for each bp filters

peaksFreq = []

peaksGains = []

nbOfPeaks = 0

for i in indexes:

if freqs[idx][i] > 0:

peaksFreq.append(freqs[idx][i])

peaksGains.append(X[idx][i])

nbOfPeaks += 1

peaksGains = peaksGains /(max(peaksGains))

#Computing t60 values

peakst60 = []

for i in range(0, nbOfPeaks):

offset = pow (10 , -3/20) #conversion of -3dB in X unit

peakIndex = indexes[len(indexes) - nbOfPeaks + i]

n = peakIndex

while X[idx][n] > (X[idx][ peakIndex ]* offset):

n = n-1

a = n

n = peakIndex

while X[idx][n] > (X[idx][ peakIndex ]* offset):

n = n+1

b = n

bandwidth = (b-a)/(fs/x.size) #bandwidth in Hz

print bandwidth

peakst60.append (6.91 / fs/(1-math.exp(-math.pi*bandwidth/fs)))

The way to compute the t60 is quite complicated but more details can be found in Julius

O. Smith’s books. ([12] [13]).

At this stage we have three tables in the python script : a table which stores the

frequency peaks, and two tables for corresponding gains and t60.
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Creating the .dsp file

All needed data is computed from the given IR, so the creation of the corresponding

model in Faust remains. For that part we use a usual way to open and write into a

file in python, with sometimes calling the three computed tables. The modelisation in

Faust uses a function from pm.lib : modalModel which generates a bandpass filterbank

with frequencies, gains and t60.

//---modalModel --

// n : number of passband filters

// modeFreqs : list of modal frequencies

// modeGains : list of gains corresponding to the frequencies

// modeT60 : list of t60 corresponding to the frequencies

//--------------

modalModel(n,modeFreqs ,modeGains ,modeT60) = _ <: par(i,n,gain(i)*modeFilter(freqs

(i),t60(i))) :> _

with{

freqs(i) = take(i+1,modeFreqs);

gain(i) = take(i+1,modeGains);

t60(i) = take(i+1,modeT60);

};

modeFilter (see appendix A) is a 2nd order direct form filter (see [12]). modalModel

simply puts some of this filter in parallel using the three given parameters. In that way,

we have managed to reconstruct the IR signal using a bandpass filterbank. Below is an

example of the Faust code generated by the IR2dsp.py script (see its diagram in figure

2.21.

import (" architecture/pm.lib");

import ("music.lib");

pi = 4*atan (1.0);

nModes = 6;

modeFrequencies = (532.601351351 , 920.27027027 , 2840.87837838 , 6806.25 ,

6934.96621622 , 7042.90540541);

massEigenValues = (0.0388805406054 , 0.0338179522812 , 1.0, 0.0929655162617 ,

0.228455685234 , 0.0407576980285);

t60 = (0.0697422669941 , 0.0465209840273 , 0.139406145263 , 0.0385136491875 ,

0.0446632820508 , 0.0211090511497);

modeFreqs = par(i,nModes ,take(i+1, modeFrequencies));

modeGains = par(i,nModes ,take(i+1, massEigenValues));

modeT60 = par(i,nModes ,take(i+1,t60));

son = modalModel(nModes ,modeFrequencies ,modeGains ,modeT60);

gate = button ("gate");

process = impulseExcitation(gate) : son <: _,_;

When compiled, the program provide one button which triggers the impulse excitation

into the modal model, and that reproduces the impulsive sound of the given object.

Besides, a help is provided while running the command python -h script.py.
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Figure 2.21: Diagram of the filterbank generated by the script, for a glass sound

Conclusion

This script works well, and the several tests we did are satisfying : the different objets

sounds quite closely from the reality, even if the raw tapped sounds were more or less

similar for the ear.

2.3.3 mesh2dsp.py

The goal of this script is really interesting. Given a geometric file (.stl file) which only

specify the shape of an object, we compute a modal analysis using the finite element

method and then we write the faust file as done in IR2dsp.py. Before explaining how

the script is written, we precise that it does not work the way we want due to a lot of

difficulties we encountered. The conclusion cites those issues.

Elmer

The finite element method (FEM) is provided by Elmer, an open source multiphysical

simulation software developed by CSC [14]. We can use Elmer in command line so its

interesting for our script. For the analysis, we need to provide a .sif file which contains
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some directions for Elmer to do its FEM. To do the FEM analysis, Elmer needs a mesh

file, a 3d object which divides the geometric object into small elements. The software

ElmerGrid can convert a mesh file into a Elmer supported mesh.

First of all, we need to convert the .stl file into a Elmer supported mesh file. This was

a first issue in the process : for now no method was found to convert a .stl file into

a mesh without doing it manually in a specific software. Moreover, ElmerGrid was not

completely reliable when used in command line, so we had to do it manually. Finally the

input file for the script has to be the name of the folder containing four Elmer supported

mesh files (mesh.boundary, mesh.elements, mesh.header mesh.nodes).

Then the .sif file is created with all information needed for the FEM analysis. When

executing the script the user has to provide 3 parameters to inform about the considered

material to consider for the analysis, which will appear in the .sif file :and

• the Young modulus

• the Poisson coefficient

• the density

Finally without a terminal we can call ElmerSolver to go for the FEM analysis, giving

the .sif file (which contains the path to the mesh files) :

output = subprocess.check_output ([" ElmerSolver case.sif"], shell=True)

Extracting modal frequencies from ElmerSolver output

ElmerSolver output is quite verbose so we need to parse it in order to extract the eigen

values computed by the FEM analysis.

#Extracting the list of eigen values

eigenVS = re.findall ("\d+\.\d+", output)

eigenV = [float (’%.3f’%float((x))) for x in eigenVS]

eigenV = filter(lambda s: s != 0.0, eigenV)

We use python functions from strings and a regular expression to find our useful infor-

mation. Finally, eigenV contains all computed eigen values. Then we just transform

those eigen values into frequencies.

frequencies = [math.sqrt(x)/(2* math.pi) for x in eigenV]

Now we have the frequencies, the bandpass filters need gains and t60 values. As the

t60 is not possible to compute from a FEM analysis, we let the user provide it as an
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input for the script, so he can play with the duration of the sound. For the gains which

represents the mass of each eigen value in the FEM analysis, we were not be able to find

out how to compute it with ElmerSolver unfortunately.

Creating the .dsp file

This is exactly the same way we did in IR2dsp.py script, as we have three tables of

frequencies, gains and t60.

Conclusion

This script is based on a nice idea : ideally we provide a geometric shape and we are able

to generate the sound of it when struck, depending on the concerned material. However

a lot of issues remain in the script :

• We did not find a effective way to transform a .stl file into Elmer supported mesh

files so that part has to be done manually for now

• We did not find how to extract eigen value mass participation from ElmerSolver

in the FEM analysis. It is an important issue because when reconstructing the

behaviour of the object with a bandpass filterbank, each filter will have the same

participation so the final result will not sound closely enough.

• Another important issue is that in the .sif file we provide some boundary con-

dition. For example in the case of a string (a very long rectilinear cylinder), both

end of the cylinder will not move during during the FEM analysis. This is very

important to well specify those boundary conditions, but depending on the mesh

files provided to ElmerSolver the boundary number will vary, so it is complicated

to automatically find whichone are concerned by the conditions, and how many

boundaries need this treatment.

The fact that Elmer is a free open source software play an important role in the fact

that we did not manage to succeed in every step of the script.



Chapter 3

Future work and internship

review

In this section we discuss what directions can be taken in the future to further with the

physical modeling library, and a review of the internship is presented.

3.1 Future work

What was done during the internship is the beginning of a project more consistent. The

ambition is to finally propose a full physical modeling modular library for programmer

musician.

First, a lot of modules have to be added to the library. Other kinds of excitation need to

be specified for strings, as only a plucking excitation is modelized : struck strings (piano),

bowed strings (violin). We also need to code the resonant part of musical instruments,

the body, which takes different forms and sizes according to the instrument. Besides

string instruments, with the waveguide model it is possible to model wind instruments

(flute, saxophone, oboe, tuba ...). The excitation is a bit different too as you have

different manners to blow into the instrument. The end also depends on the concerned

instrument so several kinds have to be specified. All these instrument parts have to

consist in a module so there are still a lot to implement. The more modular the library

is, the more possibilities it offers for the musician.

Concerning the scripts, the one transforming a geometric object into a modal model has

to be reconsidered from the beginning as for me. The idea is really interesting but not

easy to do in practise. The use of Elmer may be to reconsidered, as I did not manage

28
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to find all information we need for the script to run well, and the help provided on the

web was not really useful. It is the counterpart of an open source software.

3.2 Internship review

First of all, I really appreciated this internship. I looked for a mission which would be

part of my professional plan. I am really interested by all music technologies and my

co-workers Pierre and Emilio enabled me to choose the subject I prefer, so it was fully

benefit for me.

First of all, this internship was really benefit for me as it is a part of my professional

plan. I looked for an engineering or research internship with a musical goal. The subject

of this internship took into account music, computer science, signal processing and a bit

of physics, which is exactly what I wanted.

I discovered the deep part of one kind of sound synthesis, the physical modeling synthesis.

As I am interested in the field of sound synthesis I was really glad to work on that topic

and I have gathered some knowledge of that. I also discovered the Faust language, which

is a really useful language for musical signal processing. I am sure to reuse that in my

future career in music computer science. Moreover, I practised a lot and earned some

skills in the computer science area : the use of Linux, the python language, some signal

processing consideration ... I am also glad to have discovered the research field. The

music computer area is not a huge field and I might work in a research place in my

future career. This internship was a nice experience in a computer research center, and

I have learned of how the work is done in such a place. I have learned that in a research

job you are quite free to organize your work, so it is not that easy to be autonomous

and to get things done. You have to keep being motivated by yourself as there is no

authority to get you work. My conclusion is that the research area is fantastic if you

choose a subject you are fond of, otherwise it will be a pain to make progress in your

work.

There also were some more difficult points in this internship, and I learned a lot from

them. As I was quite autonomous I had to fight issues by myself, by searching on the

Internet or in books. I think it is an good habit to take as a future engineer, we have to

find solutions to problems, and it is important to learn how and where to look for. The

script mesh2dsp.py was quite a failure because it does not work finally. But I learned

that sometimes software we can find on the Internet are not that reliable so we have to

do with or find another one.
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There is one thing that upset me at the end of my internship. It is that the work in far

from being done, as there is still a lot of instrument modules to be implemented. I wish

I did more during the internship. Another annoying thing is the impression that all the

work done is quite useless, because for now the library is not finished so unusable, and

there is no one to continue it full-time. But I put things into perspective and what I

understand from that is that when you are in the research area, of course only a couple

of people would know or use your work, as it is state-of-the-art technology.

I finally ended my internship with new skills and new knowledge. I have gained expe-

rience and vision about music computer field, so that internship was really benefit for

me.



Appendix A

pm.lib

// # ‘pm.lib ‘: Physical Modeling Library

import (" filter.lib");

import ("music.lib");

//-------chain(A:B:...) ----------

// Creates a chain of bidirectional blocks.

// Blocks must have 3 inputs and outputs. The first input/output correspond to

the left

// going signal , the second input/output correspond to the right going signal and

the

// third input/output is the mix of the main signal output. The implied one

sample delay

// created by the ‘~‘ operator is generalized to the left and right going waves.

Thus , n

// blocks in ‘chain()‘ will add an n samples delay to both the left and right

going waves.

// ### Usage

// ‘‘‘

// rightGoingWaves ,leftGoingWaves ,mixedOutput : chain(A:B) : rightGoingWaves ,

leftGoingWaves ,mixedOutput

// with{

// A = _,_,_;

// B = _,_,_;

// };

// ‘‘‘

// ### Requires

// ‘filter.lib ‘ (‘crossnn ‘)

//-----------------------------

chain(A:As) = (crossnn (1),_’,_ : _,A : crossnn (1),_,_ : _,chain(As) : crossnn (1),

_,_) ~ _ : !,_,_,_;

chain(A) = A;

//-------input(x)--------------

// Adds a waveguide input anywhere between 2 blocks in a chain of blocks (see ‘

chain() ‘).

// ### Usage

// ‘‘‘
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// string(x) = chain(A:input(x):B)

// ‘‘‘

// Where ‘x‘ is the input signal to be added to the chain.

//-----------------------------

input(x) = +(x) ,+(x),_;

//-------output () --------------

// Adds a waveguide output anywhere between 2 blocks in a chain of blocks and

sends it

// to the mix output channel (see ‘chain () ‘).

// ### Usage

// ‘‘‘

// chain(A:output:B)

// ‘‘‘

//-----------------------------

output(x,y,s) = x,y,x+y+s;

//-------terminations(a,b,c)--------------

// Creates terminations on both sides of a ‘chain()‘ without closing the inputs

and

// outputs of the bidirectional signals chain. As for ‘chain ()‘, this function

adds a 1

// sample delay to the bidirectional signal both ways.

// ### Usage

// ‘‘‘

// rightGoingWaves ,leftGoingWaves ,mixedOutput : terminations(a,b,c) :

rightGoingWaves ,leftGoingWaves ,mixedOutput

// with{

// a = *(-1); // left termination

// b = chain(D:E:F); // bidirectional chain of blocks (D, E, F, etc

.)

// c = *(-1); // right termination

// };

// ‘‘‘

// ### Requires

// ‘filter.lib ‘ (‘crossnn ‘)

//----------------------------------------

terminations(a,b,c) = (_,crossnn (1),_,_ : +,+,_ : b) ~ (c,a : crossnn (1)); //

adds 2 samples to the loop!

//-------fullTerminations(a,b,c)----------

// Same as ‘terminations ()‘ but closes the inputs and outputs of the

bidirectional chain

// (only the mixed output remains).

// ### Usage

// ‘‘‘

// terminations(a,b,c) : _

// with{

// a = *(-1); // left termination

// b = chain(D:E:F); // bidirectional chain of blocks (D, E, F, etc

.)

// c = *(-1); // right termination

// };

// ‘‘‘

// ### Requires
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// ‘filter.lib ‘ (‘crossnn ‘)

//----------------------------------------

fullTerminations(a,b,c) = 0,0,0 : terminations(a,b,c) : !,!,_;

//-------leftTermination(a,b)----------

// Creates a termination on the left side of a ‘chain()‘ without closing the

inputs and

// outputs of the bidirectional signals chain. This function adds a 1 sample

delay near

// the termination.

// ### Usage

// ‘‘‘

// rightGoingWaves ,leftGoingWaves ,mixedOutput : terminations(a,b) :

rightGoingWaves ,leftGoingWaves ,mixedOutput

// with{

// a = *(-1); // left termination

// b = chain(D:E:F); // bidirectional chain of blocks (D, E, F, etc

.)

// };

// ‘‘‘

// ### Requires

// ‘filter.lib ‘ (‘crossnn ‘)

//----------------------------------------

leftTermination(a,b) = 0,0,0 : terminations(a,b,*(0));

//-------rightTermination(b,c)----------

// Creates a termination on the right side of a ‘chain ()‘ without closing the

inputs and

// outputs of the bidirectional signals chain. This function adds a 1 sample

delay near

// the termination.

// ### Usage

// ‘‘‘

// rightGoingWaves ,leftGoingWaves ,mixedOutput : terminations(b,c) :

rightGoingWaves ,leftGoingWaves ,mixedOutput

// with{

// b = chain(D:E:F); // bidirectional chain of blocks (D, E, F, etc

.)

// c = *(-1); // right termination

// };

// ‘‘‘

// ### Requires

// ‘filter.lib ‘ (‘crossnn ‘)

//----------------------------------------

rightTermination(b,c) = terminations (*(0),b,c) : !,!,_;

//-------waveguide(nMax ,n)----------

// A simple waveguide block based on a 4th order fractional delay.

// ### Usage

// ‘‘‘

// rightGoingWaves ,leftGoingWaves ,mixedOutput : waveguide(nMax ,n) :

rightGoingWaves ,leftGoingWaves ,mixedOutput

// ‘‘‘

// With:

// * ‘nMax ‘: the maximum length of the waveguide in samples
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// * ‘n‘ the length of the waveguide in samples.

// ### Requires

// ‘filter.lib ‘ (‘fdelay4 ‘)

//----------------------------------

waveguide(nMax ,n) = fdelay4(nMax ,n),fdelay4(nMax ,n),_;

//-------idealString(length ,reflexion ,xPosition ,x)----------

// An ideal string with rigid terminations and where the plucking position and

the

// pick -up position are the same.

// ### Usage

// ‘‘‘

// 1-1’ : idealString(length ,reflexion ,xPosition ,x)

// ‘‘‘

// With:

// * ‘length ‘: the length of the string in meters

// * ‘reflexion ‘: the coefficient of reflexion (0 -0.99999999)

// * ‘pluckPosition ‘: the plucking position (0.001 -0.999)

// * ‘x‘: the input signal for the excitation

// ### Requires

// ‘filter.lib ‘ (‘fdelay4 ‘,‘crossnn ‘)

//----------------------------------------------------------

idealString(length ,reflexion ,pluckPosition ,x) = fullTerminations(term ,wg ,term)

with{

nMax = 512; // each segment of the string can ’t be longer than that

N = length*SR/320 -8; // length (meters) to samples

nUp = N/2* pluckPosition : max(1); // upper string segment length

nDown = N/2*(1 - pluckPosition) : max(1); // lower string segment length

wg = chain(waveguide(nMax ,nUp) : input(x) : output : waveguide(nMax ,nDown

)); // waveguide chain

term = *(-reflexion); // terminations

};

//-------dampingFilter(rho ,h0,h1 ,x)--------------------

//-----------------------------------------------------

dampingFilter(rho ,h0 ,h1,x) = rho * (h0 * x’ + h1*(x+x’’));

//-------bridge(length ,B,t60 ,x)-----------

// Simulate a bridge using a dampingFilter.

// ### Usage

// ‘‘‘

//

// ‘‘‘

// With:

// * ‘length ‘: length of the string in meters

// * ‘B‘: the brightness of the string (0 -0.99)

// * ‘ t 6 0 : decaying time

// * ‘x‘: the input signal for the excitation

// ### Requires

// ‘filter.lib ‘

//------------------------------------------------------

bridge(length ,B,t60 ,x) = dampingFilter(rho ,h0,h1,x)

with{

freq = 320/ length;

h0 = (1.0 + B)/2;
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h1 = (1.0 - B)/4;

rho = pow (0.001 ,1.0/( freq*t60));

};

//-------nonIdealString ---------------------------

nonIdealString(length ,pluckPosition ,B,t60 ,x) = fullTerminations(term ,wg ,term)

with{

nMax = 512; // each segment of the string can ’t be longer than that

N = length*SR/320 -8; // length (meters) to samples

nUp = N/2* pluckPosition : max(1); // upper string segment length

nDown = N/2*(1 - pluckPosition) : max(1); // lower string segment length

wg = chain(waveguide(nMax ,nUp) : input(x) : output : waveguide(nMax ,nDown

)); // waveguide chain

term(x) = bridge(length ,B,t60 ,x);

};

//-------steelString -----------------------------

//-----------------------------------------------

steelString(length ,pluckPosition ,x) = nonIdealString(length ,pluckPosition ,0.8,6,x

);

//-------nylonString -----------------------------

//-----------------------------------------------

nylonString(length ,pluckPosition ,x) = nonIdealString(length ,pluckPosition ,0.25,4,

x);

//-------impulseExcitation(gate)--------------

// Creates an impulse excitation of one sample , from a gate button when it is

triggered.

// ### Usage

// ‘‘‘

// gate = button(’gate ’);

// impulseExcitation(gate) : chain;

// ‘‘‘

// With:

// * ‘ g a t e : a gate button

//--------------------------------------

impulseExcitation(gate) = gate <: _,mem : - : >(0);

//-------acousticExcitation(gate ,P)-------------

// Creates an acoustic excitation (a noise burst) when a gate button is triggered

.

// ### Usage

// ‘‘‘

// gate = button(’gate ’);

// P = SR/freq;

// acousticExcitation(gate ,P) : chain;

// ‘‘‘

// With:

// * ‘ g a t e : a gate button

// * ‘ P : fundamental period in samples

// ### Requires

// ’music.lib ’ (noise)

//--------------------------------------

acousticExcitation(gate ,P) = noise : *(gate : trigger(P))



pm.lib 36

with {

diffgtz(x) = (x-x’) > 0;

decay(n,x) = x-(x>0)/n;

release(n) = + ~ decay(n);

trigger(n) = diffgtz : release(n) : > (0.0);

};

//-----modeFilter -----

modeFilter(f,t60) = tf2(b0 ,b1,b2,a1 ,a2)

with{

b0 = 1;

b1 = 0;

b2 = -1;

w = 2*PI*f/SR;

r = pow (0.001 ,1/ float(t60*SR));

a1 = -2*r*cos(w);

a2 = r^2;

};

//---modalModel --

// n : number of passband filters

// modeFreqs : list of modal frequencies

// modeGains : list of gains corresponding to the frequencies

// modeT60 : list of t60 corresponding to the frequencies

//--------------

modalModel(n,modeFreqs ,modeGains ,modeT60) = _ <: par(i,n,gain(i)*modeFilter(freqs

(i),t60(i))) :> _

with{

freqs(i) = take(i+1,modeFreqs);

gain(i) = take(i+1,modeGains);

t60(i) = take(i+1,modeT60);

};
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IR2dsp.py

from __future__ import division

import math

import numpy as np

import matplotlib.pyplot as plt

from sys import argv

import subprocess

from scipy.io.wavfile import read

import peakutils

import peakutils.plot as pkplt

import operator

import argparse

#Help for use of the script

parser=argparse.ArgumentParser(

description="The IR2dsp.py script is a python script that generates a .dsp

file from an impulse response file (a .wav file). The impulse response is

analyzed in order to rebuild the sound of the vibration of the object based

on this impulse response.",

epilog="See http :// faust.grame.fr/images/faust -tutorial2.pdf for more

information about Faust")

parser.add_argument(’soundFile ’, type=str , help="Path of the sound file")

parser.add_argument(’modelName ’, help=’The name of the model created in the .dsp

file’)

parser.add_argument(’peakThreshold ’, help=’Minimum value of peaks in dB (between

- infinity and 0)’)

parser.add_argument(’peakDistance ’, help=’Minimum distance between two peaks in

Hertz’)

ars=parser.parse_args ()

# Arguments

script , soundFile , modelName , peakThreshold , peakDistance = argv

#Reading file

(fs , x) = read(soundFile)

# Normalizing sound

x = x/max(x)

37
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#FFT

X = np.abs(np.fft.fft(x))

X = X/(max(X))

# computing corresponding frequencies

time_step = 1 / fs

freqs = np.fft.fftfreq(x.size , time_step)

idx = np.argsort(freqs)

#plot for debug

#plt.plot(freqs[idx], 20* np.log(X[idx ]))

#plt.show ()

# detecting peaks

threshold = math.pow(10, float(peakThreshold)/20) #from dB to X unit

distance = int(peakDistance)/(fs/x.size)

indexes = peakutils.indexes(X[idx], thres=threshold , min_dist=distance)

#Storing frequencies and modes for each bp filters

peaksFreq = []

peaksGains = []

nbOfPeaks = 0

for i in indexes:

if freqs[idx][i] > 0:

peaksFreq.append(freqs[idx][i])

peaksGains.append(X[idx][i])

nbOfPeaks += 1

peaksGains = peaksGains /(max(peaksGains))

# Computing t60 values

peakst60 = []

for i in range(0, nbOfPeaks):

offset = pow (10 , -3/20) # conversion of -3dB in X unit

peakIndex = indexes[len(indexes) - nbOfPeaks + i]

n = peakIndex

while X[idx][n] > (X[idx][ peakIndex ]* offset):

n = n-1

a = n

n = peakIndex

while X[idx][n] > (X[idx][ peakIndex ]* offset):

n = n+1

b = n

bandwidth = (b-a)/(fs/x.size) # bandwidth in Hz

print bandwidth

peakst60.append (6.91 / fs/(1-math.exp(-math.pi*bandwidth/fs)))

print "peaks frequencies :"

print peaksFreq

print "corresponding gains :"

print peaksGains

print "corresponding t60 :"
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print peakst60

# Writing the dsp file #

# #######################

file = open(modelName + ".dsp", "w")

file.write("import (\" architecture/pm.lib\");\n")

file.write("import (\" music.lib\");\n\n")

file.write("pi = 4*atan (1.0) ;\n")

file.write("nModes = ")

file.write(str(len(peaksGains)))

file.write(";\n")

file.write("modeFrequencies = ("); #writing the frequencies list

k = 0

for i in peaksFreq :

file.write(str(i))

if(k+1 < len(peaksGains)):

file.write(", ")

k += 1

file.write(");\n");

file.write("massEigenValues = ("); #writing the masses list

k = 0

for i in peaksGains :

file.write(str(i))

if(k+1 < len(peaksGains)):

file.write(", ")

k += 1

file.write(");\n");

file.write("t60 = ("); #writing the t60 list

k = 0

for i in peakst60 :

file.write(str(i))

if(k+1 < len(peaksGains)):

file.write(", ")

k += 1

file.write(");\n");

file.write("modeFreqs = par(i,nModes ,take(i+1, modeFrequencies));\n")

file.write("modeGains = par(i,nModes ,take(i+1, massEigenValues));\n")

file.write("modeT60 = par(i,nModes ,take(i+1,t60));\n")

file.write(modelName)

file.write(" = modalModel(nModes ,modeFrequencies ,modeGains ,modeT60);");

file.write(’\ngate = button ("gate");’)

file.write(’\nprocess = impulseExcitation(gate) : ’ + modelName + ’ <: _,_;’)

file.close();
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mesh2dsp.py

from sys import argv

import os

import subprocess

import string

import re

import math

script , stlFile , modelName , young , poisson , density , t = argv

fileName = stlFile [0:len(stlFile) -4]

print fileName

# subprocess .call ([" gmsh", "-2", "-o", stlFile ])

#mshFile = fileName + ". msh"

# subprocess .call ([" ElmerGrid", "14" , "2", mshFile)

# Writing of the sif file#

# #########################

sifFile = open("case.sif", "w")

sifFile.write("Header")

sifFile.write(’Mesh DB "." "’+fileName+’"’)

sifFile.write("""

Include Path ""

Results Directory ""

End

Simulation

Coordinate System = " Cartesian 3D"

Coordinate Mapping (3) = 1 2 3

Simulation Type = "Steady State"

Steady State Max Iterations = 1

Solver Input File = " eigen_values .sif"

Output File = " eigen_values .dat"

Post File = " eigen_values .ep"

End

Body 1

40
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Equation = 1

Material = 1

End

Material 1

""")

sifFile.write("Youngs Modulus = ")

sifFile.write(young)

sifFile.write("\nPoisson Ratio = ")

sifFile.write(poisson)

sifFile.write("\nDensity = ")

sifFile.write(density)

sifFile.write("""

End

Equation 1

Stress Analysis = True

End

Solver 1

Equation = "Stress Analysis"

Eigen Analysis = Logical True

Eigen System Values = Integer 20

Linear System Solver = "direct"

Variable = " Displacement "

Variable Dofs = 3

Linear System Iterative Method = "BiCGStab"

Linear System Max Iterations = 1000

Linear System Convergence Tolerance = 1.0e -08

Linear System Abort Not Converged = True

Linear System Preconditioning = "ILU0"

Linear System Residual Output = 1

Steady State Convergence Tolerance = 1.0e -05

Nonlinear System Convergence Tolerance = 1.0e -05

Nonlinear System Max Iterations = 1

Nonlinear System Newton After Iterations = 3

Nonlinear System Newton After Tolerance = 1.0e -02

Nonlinear System Relaxation Factor = 1

Linear System Precondition Recompute = 1

End

Boundary Condition 1

Target Boundaries (1) = 1

Displacement 1 = 0

Displacement 2 = 0

Displacement 3 = 0

End

Boundary Condition 2

Target Boundaries (1) = 2

Displacement 1 = 0

Displacement 2 = 0

Displacement 3 = 0

End

""")
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sifFile.close ()

output = subprocess.check_output (["ElmerSolver case.sif"], shell=True)

index1 = string.rfind(output , "Computed Eigen Values")

index2 = string.rfind(output , "EigenSolve")

output = output[index1:index2]

# Extracting the list of eigen values

eigenVS = re.findall("\d+\.\d+", output)

eigenV = [float(’%.3f’%float((x))) for x in eigenVS]

eigenV = filter(lambda s: s != 0.0, eigenV)

frequencies = [math.sqrt(x)/(2* math.pi) for x in eigenV]

print frequencies

nModes = len(frequencies)

masses = [1] * nModes

print masses

t60 = t;

# Writing of the dsp file #

# ##########################

file = open("modalModel.dsp", "w")

file.write("import (\" architecture/pm.lib\");\n")

file.write("import (\" music.lib\");\n\n")

file.write("pi = 4*atan (1.0) ;\n")

file.write("nModes = ")

file.write(str(nModes))

file.write(";\n")

file.write("eigenValues = ("); #writing the frequencies list

k = 0

for i in frequencies :

file.write(str(i))

if(k+1 < nModes):

file.write(", ")

k += 1

file.write(");\n");

file.write("massEigenValues = ("); #writing the masses list

k = 0

for i in masses :

file.write(str(i))

if(k+1 < nModes):

file.write(", ")

k += 1

file.write(");\n");

file.write("modeFreqs = par(i,nModes ,sqrt(take(i+1, eigenValues))*2*pi);\n")

file.write("modeGains = par(i,nModes ,take(i+1, massEigenValues));\n")

file.write("t60 = ")

file.write(str(t60))

file.write(";\n\n")

file.write(modelName)

file.write(" = modalModel(nModes ,modeFreqs ,modeGains ,t60);");
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file.close();
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